Preparation and Characterisation of Adducts of Bismuth Pentafluoride and Antimony Pentafluoride by Vibrational Spectroscopy, X-Ray Powder Diffraction, and Single-crystal X-Ray Crystallography †

Grace S. H. Chen, Jack Passmore,* Peter Taylor, Tom K. Whidden, and Peter S. White Department of Chemistry, University of New Brunswick, Fredericton, New Brunswick, Canada E3B 6E2

Adducts between BiF₅ and SbF₅ were prepared in liquid WF₆ at room temperature. Sublimation of the product gave various volatile crystalline products with analyses corresponding to BiF₅(SbF₅)₃, BiF₅(SbF₅)₂, BiF₅(SbF₅)_{1.5}, and (BiF₅)₈SbF₅ (n = 2, 3, or 20.6). The adducts (BiF₅)₈SbF₅ (n = 1 or 1.5), were also prepared. The BiF₅(SbF₅)_n (n = 1.5, 2, or 3) adducts were of low melting point and of higher volatility than (BiF₅)₈SbF₅ ($n \ge 1$). Single-crystal X-ray diffraction studies showed that BiF₅(SbF₅)_n (n = 2 or 3) were isomorphous with tetrameric (NbF₅)₄, and an X-ray powder diffraction photograph of BiF₅(SbF₅)_{1.5} was very similar to that of BiF₅(SbF₅)_n (n = 2 or 3), indicating that it was also isostructural with (NbF₅)₄. The BiF₅(SbF₅)₃ structure likely consists of disordered BiF₅(SbF₅)₃ tetramers, and BiF₅(SbF₅)₂ likely consists of a mixture of disordered BiF₅(SbF₅)₃ and (BiF₅.SbF₅)₂ tetramers in the appropriate ratios. The molecular-beam mass spectra of SbF₅(BiF₅)_n (n = 2 or 3) show fragment ions attributable to BiF₅ and SbF₅ as well as various associated pentafluoride clusters, including BiF₅(SbF₅)₃ for the n = 3 adduct. The vibrational spectra of BiF₅(SbF₅)_n (n = 1.5, 2, 0 or 3) were similar and indicative of the presence of SbF₅ and BiF₅ units joined by *cis*-bridged fluorine atoms. (BiF₅)₈SbF₅ (n = 1, 1.5, 2, 3, or 20.6), were shown by X-ray powder diffraction photography to be isomorphous with polymeric *trans*-bridged BiF₅ and therefore to consist of disordered BiF₅ and SnF₅ units linked by *trans*-bridged fluorine atoms. The *trans*-bridged polymeric BiF₅-type structure of the adducts was further supported by their vibrational spectra. The behaviour of BiF₅-(SbF₅)_n (n = 2 or 3) in WF₆ solution is discussed. An estimated phase diagram for the system BiF₅-SbF₅ was constructed.

The pentafluorides of Group 5B elements are an important and intriguing group of 'simple' binary compounds. It is well established that phosphorus pentafluoride (m.p. -93.8°C, b.p. 84.6 °C) ¹ and arsenic pentafluoride (m.p. -79.8 °C, b.p. -53.2 °C)¹ are trigonal bipyramidal monomers in the gas phase,² and are likely monomeric in all states, in view of their physical properties ¹ and similarity of vibrational spectra in all phases.^{3,4} In contrast, antimony pentafluoride (m.p. 8.3 °C, b.p. 141 °C)¹ is a cyclic tetramer in the solid state ⁵ and a cis-bridged polymer of uncertain molecular weight in the liquid state.^{1,3,6} In the gas phase, SbF₅ is associated, the degree of which has been measured as a function of temperature and pressure.¹⁻³ The identity of the cyclic trimer $(SbF_3)_3$ in the gas phase has been confirmed by electron diffraction.⁷ Bismuth pentafluoride (m.p. 151.4 °C, b.p. 230 °C)¹ is a *trans*-bridged polymer in the solid state,⁸ likely polymeric in the liquid phase,¹ and, as is the case for SbF₅, associated species have been detected by mass spectroscopy in the gas phase.9,10 The enthalpy of polymerisation of SbF₅ has been estimated ¹¹ as -18.5 kJ mol⁻¹. All these pentafluorides are strong Lewis acids. The relative acidities have been established from various studies 12,13 to decrease in the order SbF₅ > AsF₅ > PF5. However we have shown 4 that SO2F2, a very weak base, forms a weak adduct, SO₂F₂·AsF₅, with arsenic pentafluoride at low temperatures, but a similar adduct was not formed with SbF₅. It might be expected that BiF₅ would be a better Lewis

acid than SbF₅, but several studies show that the reverse is the case.^{14,15} We have shown that PF₅, itself a strong Lewis acid, acts as a base towards SbF₅, a stronger acceptor, to form the ionic salt $[PF_4]^+[Sb_3F_{16}]^{-.16}$ Arsenic pentafluoride did not form an adduct under similar conditions.¹⁶ Kolditz and Rehak ¹⁷ reported that the pentafluorides of antimony and bismuth formed an adduct of composition BiF₅·2SbF₅ but no evidence for its structure was presented. In this work we sought to confirm the existence of this adduct, to determine what other adducts could be formed between BiF₅ and SbF₅, and to determine their structures. A preliminary account of this work has been reported.¹⁸

Experimental

Reagents and Apparatus.—Unless otherwise stated, apparatus, materials, and techniques were as previously described.^{19,20} X-Ray powder diffraction photographs (Cu- K_{x} radiation $\lambda = 1.541$ Å) were obtained using a Debye-Sherrer camera of radius 114.6 mm with a Straumanis film mount. Cell dimensions were obtained according to ref. 21. Reflections with $2\theta > 90^{\circ}$ were not included in the analysis because their lines were broad. BiF₅ (Ozark-Mahoning) was used directly and shown to be pure by Raman spectroscopy and X-ray powder photography. SbF₅ (Ozark-Mahoning) was purified by double vacuum distillation at room temperature (r.t.). WF₆ (Ozark-Mahoning) was stored over NaF prior to use. Solids were manipulated in a Vacuum Atmosphere's Dry Box equipped with a Dri-Train.

Preparation of BiF₅-SbF₅ Adducts.—In a typical reaction SbF₅ (1.83 g, 8.44 mmol) and WF₆ (2.50 g) were condensed onto BiF₅ (0.77 g, 2.53 mmol) in a Pyrex glass vessel attached to a Monel metal vacuum line via a 1KS4 stainless-steel Whitey valve and Teflon Swagelok compression fittings.

[†] Supplementary data available (No. SUP 56053, 14 pp.): atomic co-ordinates, thermal parameters, and structure factors for BiF₅-(SbF₅)₃; X-ray powder diffraction data for (BiF₅)_nSbF₅ (n = 1, 2, 3, or 20.6); Raman spectra of BiF₅(SbF₅)₃ (powdered, in WF₆, and liquid at 45 °C) and (BiF₅)_nSbF₅ (n = 2 or 3) (powdered); i.r. spectra of BiF₅(SbF₅)_n (n = 1, 1.5, or 2) and (BiF₅)₃SbF₅. See Instructions for Authors, J. Chem. Soc., Dalton Trans., 1985, Issue 1, pp. xviii—xix.

BiF.: SbF.	Total	WF ₄ /	Crude			Subl		9/6 2			Final
mole ratio	weight/g		product	lst	2nd	3rd	4th	Sth	6th	7th	residue "/g
1:3.34	2.6	2.50	Tetramer ^{b,c}	0.661 4	0.590 4	0.087 4	0.063 •				0.22
				Tetramer BiF ₅ (SbF ₅) ₃ (1) ¹	Tetramer	Tetramer and chain (trace)	Chain (BiF ₅) ₂ SbF ₅ (14) ⁷				
1:3.20	2.79	3 50	3 50 Tetramer ^c	m.p. 39 °C 0 374 4	P 616 U	0 150 4					0.45
	i	2		Tetramer	Tetramer	Tetramer					C+.0
1:2.24	2.70	1.77	Tetramer and	0.960 4	0.133 4	∍ 660.0					0.83
			chain ^e	Tetramer BiF ₅ (SbF ₅) ₂ (5) ^d	Tetramer	Tetramer and chain (trace)	·				
96 6 - 1	, 0,	5 22	Tetramer	m.p. 42 °C	p 272 0	0 156 d					201
04.4	4/14	00.0	and & chain	Tetramer	Tatramar	Tatramar and					00.1
			(trace)	BiF ₅ (SbF ₅) ₂ (6) ⁷ m.p. 43 °C		chain (trace)					
l : 1.05	1.71	3.78	Tetramer	0.076 4	0.04 4	0.020 °	0.020 €	0.437 °			0.19
			and ^o chain (trace)	Tetramer	Tetramer	Chain and tetramer (trace)	Tetramer and chain (trace)	Chain (BiF ₅) ₃ SbF (15) ^c			
1.7 : 1.0	1.42	2.11	Tetramer and ^o chain (trace)	0.514 ⁴ Chain	0.105 € Chain	0.072 ° Chain (BiF ₅) _{20.6} SbF ₅ (16) °	0.060 ¢ Chain				0.41
1.0:3.0	3.51	2.86	2.86 Tetramer °	0.093 4	0.189 4	0.121	0.263 °	0.302 °	0.171 •	0.157, 0.53	0.53
				Tetramer BiF ₅ (SbF ₅), (2,3) ¹ m.p. 38—39 °C	Tetramer BiF ₅ (SbF ₅) ₃ (4) ¹	Tetramer	Tetramer	Tetramer BiF ₅ (SbF ₅) ₂ (7,8) ^J m.p. 42-43 °C	Tetramer	Tetramer BiF ₅ (SbF ₅)5 (9,10) ¹ m.p. 47—77 °C	

J. CHEM. SOC. DALTON TRANS. 1985

Table 2. Elementa	l analysis	(%) ^a for	BiFs-SbFs	adducts
-------------------	------------	----------------------	-----------	---------

Sample			Calc.			Found	
no.	Compound	Bi	Sb	F	Bi	Sb	F
1	BiFs(SbFs)3	21.90	38.30	39.80	21.65	38.05	40.00
2					21.75	37.95	39.65
3						38.30 *	
4					21.80	38.50	39.55
5	BiF ₅ (SbF ₅) ₂	28.35	33.00	38.65	28.20	33.30	38.40
6					28.05	32.70	38.45
7					28.55	32.85	38.35
8						33.15 *	
9	BiF ₅ (SbF ₅) _{1.5}	33.20	29.05	37.75	32.80	29.10	38.05
10						27.65 ^b	
11	BiF₅∙SbF₅	40.15	23.40	36.50	40.35	23.10	36.60
12	(BiF ₅) _{1.5} SbF ₅	46.60	18.10	35.30	46.20	17.85	35.30
13						18.35 *	
14						16.50 ^b	
15	(BiF ₅) ₂ SbF ₅	50.70	14.75	34.55	48.05?	13.95?	37.15?
16	(BiF ₅) ₃ SbF ₅	55.55	10.80	33.65	55.10	10.65	34.00
17	$(BiF_{5})_{20.6}SbF_{5}$	66.45	1.90	31.65	66.40	1.85	31.10

^a Unless otherwise specified analyses were performed by Alfred Bernhardt, W. Germany. ^b Analyses performed in-house by means of atomic absorption of solutions in 20% HCl by volume and calibration of atomic absorption spectra against standards with appropriate quantities of NaF.

SbF₅ is soluble in WF₆, whereas BiF_5 appears not to be. A clear solution over a white solid (BiF₅) was obtained at r.t. and the mixture was stirred overnight. The volatiles (WF₆) were transferred to another vessel in a closed system, leaving a white paste-like substance of the same weight as that of the SbF₅ and BiF₅ starting materials. The paste appeared to become drier on grinding in the dry box, presumably by WF_6 and/or SbF₅ evaporation. The solid was placed in a glass vessel (ca. 12 cm long and 2.2 cm diameter), which was evacuated and flame sealed. It was then placed on top of an oven in a sloping position, with the bottom of the tube at 28-30 °C and the top at 22-24 °C. Clear crystals collected in the cooler part of the tube after several hours and appreciable amounts had collected after 1 or 2 d. The crystals were removed, the unsublimed residue transferred to another similar vessel, and the vessel again similarly evacuated, sealed, and heated. The process was repeated several times and the results of this and similar experiments are given in Table 1. The empirical formulae of some of the sublimation products given in Table 1 are based on chemical analyses given in Table 2. The melting points of various sublimation products are also included in Table 1.

Preparation of (BiF₅)_nSbF₅ Adducts Isomorphous with BiF₅ with Maximum Incorporation of SbF5.--(1) BiF5 (0.99 g) and SbF_5 (1.52 g) were reacted in WF₆ overnight as described above. The Raman spectrum of the solid product of average composition BiF₅(SbF₅)_{2,15} showed it to contain mostly a cisbridged tetramer, isomorphous with NbF5,²² and a small amount of material isomorphous with BiF₅⁸ (see below). The product was ground and subjected to a dynamic vacuum at r.t. for 5 h. The Raman spectrum of the residue showed it to contain a small but larger amount of the trans-bridged product than prior to pumping. The product was reground and the process repeated four times with pumping times of 3, 3.2, 0.4, and 0.7 h respectively, until the residue did not contain any detectable (Raman) amount of cis-bridged adduct. Elemental analysis of this material (Table 2, sample 11) showed that it was BiF₅·SbF₅.

(2) BiF_5 (1.07 g) and SbF_5 (0.80 g) were reacted overnight in WF₆ (8.25 g) with stirring in a two-bulbed vessel incorporating a medium sintered glass frit. The mixture was filtered and

Table 3. Mass spectra (relative intensities) of $BiF_{3}(SbF_{5})_{2}$ and $BiF_{5}(SbF_{5})_{3}$

	BiF ₅ (SbF ₅) ₃	BiF5(SbF5)2
Ion	$T^a = 26 ^{\circ}\mathrm{C}$	$T^{a} = 17 ^{\circ}\mathrm{C}$
Sb	4	b
SbF	8	2
SbF₂	63	32
SbF3	30	9
SbF₄	100	100
Bi	8	3
BiF	6	9
BiF ₂	22	43
BiF3	0.4	b
BiF₄	35	96
Sb ₂ F ₉	19	30
SbBiF₅	0.3	
SbBiF ₆	0.2	
SbBiF ₇	1	5
SbBiF,	10	25
Bi ₂ F ₅	0.1	1
Bi ₂ F ₇	0.1	1
Bi ₂ F9	1	8
Sb ₃ F ₁₄	0.1	ł
Sb ₂ BiF ₁₂	0.06	0.5
Sb ₂ BiF ₁₄		1
SbBi ₂ F ₁₁		с
SbBi ₂ F ₁₂	d	с
SbBi ₂ F ₁₄	0.04	
Sb3BiF14	d	
Sb ₃ BiF ₁₅	d	
Sb ₃ BiF ₁₇	0.04	

^a Source temperature. ^b Not detected. ^c Detected at low intensity (<0.5) at higher temperature (T = 45-50 °C). ^d Detected at T = 60 °C, at approximately the same levels as other SbBi₂ and Sb₃Bi ions. Minor peaks Sb₂F₅⁺ to Sb₂F₈⁺ also found at low levels.

the less soluble portion washed with WF₆ by condensing the latter back across the frit and refiltering. This was repeated several times and the WF₆ was then removed. The insoluble portion contained $(BiF_5)_nSbF_5$ of the *trans*-bridged type with *n* large. The soluble material (1.05 g), a mixture of *cis*- and *trans*-bridged adducts, was placed in another similar vessel and WF₆ (3.00 g) added. The solution was filtered once and

Table 4. Vibrational spectra (cm⁻¹) ^e of BiF₅(SbF₅)₃ and SbF₅

		BiF₅((SbF ₅) ₃		Sb	PF₅	
í	Raman ^a	I.r."	Raman in SbFs		Raman	I.r.	
Powder	Liquid ^e	Powder ⁴	solution ^{c,e}	solution ^f	Liquid ^e	Liquid *	Tentative assignments
		748 (sh)				742s	1
738vw		734 (sh)					
710m	712m (p)		714s (p)	711s (p)	716s (p)		Terminal ShE stratches
698w (sh)	-	700s	-			705s	Terminal SbF₄ stretches
673vw (sh)	673vw (sh)	666m				669s	
668m	668m (p)		667s (p)	668 (sh) (p)	668s (p)		J
649vw		648m)
633w	632w (sh) (dp)	622s	632w (sh) (dp)	632w (dp)			Terminal BiF ₄ stretches
620ms	621m (p)		622m (p)	622m (p)			reminar Bir4 stretches
604s	602s (p)	605w	603s (p)	603s (p)			J
~500vvw,br		488s,br				~450w,br	Sb-F-Sb and Bi-F-Sb bridging stretches
	330w,br (p)		330w,br (p)		349vw,br (p)		
308vw	296w,br (sh) (dp)		300w (dp)		302w (dp)	~310w,br	
271m	268w (dp)		268w (dp)	268m (dp)	268w (dp)		
(233m			223w,br (dp)		231w,br (dp)		
220m }	192w,br (dp)		196w (dp)	200w (dp)		~200w,vbr	
186w ノ			182w (dp)	189w (dp)	189w (dp)		
154vw	147w,br (dp)		150w,br (dp)	148w (dp)	140w,br (p)		
116vw	126w,br (dp)		132w,br (p)	126w,br (dp)			

^a dp = Depolarised, p = polarised. ^b The actual spectrum is deposited in SUP 56053. ^c Taken at ~45 °C. ^d Powdered solid between AgCl plates. [•] BiF₃(SbF₅)₃:SbF₅ = 1 : 4.4 mol ratio. ^f WF₆ lines have been deleted, mol ratio BiF₅(SbF₅)₃: WF₆ = 1 : 7.0. ^g The values are consistent with those quoted in refs. 6 and 32.

Table 5. Vibrational spectra (cm⁻¹) ^a of BiF₅(SbF₅)₂ and BiF₅(SbF₅)_{1.5}

	BiF _s (Sbl	F5)2		BiFs(SbFs)1.5		
Ĥ	Ramun	I.r.*	Ra	ıman	I.r. [*]	
Powder	Liquid '	Powder ^d	Powder	Liquid	Powder 4	Tentative assignments
		748 (sh)			747 (sh)	`
738vw		734 (sh)	738vw		722s	
710m	712m (p)		708m	740m (p)		Torrestor I ShE start has
698mw (sh)		698s 665m	696ms	•	69 6s	Terminal SbF₄ stretches
668m	667m (p)		668m	667m (p))
648vw		646m	649vw		659s)
632w	632w (sh) (dp)	620s	633m	632w (dp)	617s	The LDIC states
620ms	621m (p)		620ms	620m (p)		Terminal BiF ₄ stretches
604s	602s (p)	605 (sh)	603s	600s (p)	600 (sh))
			500vvw,br?		515m,br	\int Sb-F-Sb and Bi-F-Sb bridging
~500vvw,br		488s,br				(stretches)
			~420vvw,br?		467m,br) stretches
	330w,br (p)			330w,br		
308vw	296w,br (sh) (dp))	308vw			
271m	268w (dp)		271m	268w (dp)		
223m			223m)			
}	192m,br (dp)		}	192w,br (dp)		
186w)			186w ノ			
155vw	149w,br (dp)		153vw	147w,br (dp)		
116vw	128w,br (p)		116w	126w,br (p)		
a dp = Depola	rised, p = polarise	d. " The actual	spectrum is includ	led in SUP 5605:	3. ° Taken at ~	45 °C. 4 Powdered solid between AgC

" dp = Depolarised, p = polarised. " The actual spectrum is included in SUP 56053. " Taken at ~45 °C. " Powdered solid between AgCl plates." Taken at ~75 °C.

the WF₆ removed. The Raman spectrum and X-ray powder diffraction photograph of the less soluble portion showed that it did not contain any *cis*-bridged adduct. Elemental analysis (Table 2, samples 12 and 13) supports the formulation $(BiF_5)_{1.5}SbF_5$.

Preparation of Single Crystals.—(1) $BiF_{5}(SbF_{5})_{2}$. Powdered $BiF_{5}(SbF_{5})_{2}$ was added to carefully dried, thin-walled silica

capillaries (o.d. 0.3 mm) and flame sealed under atmospheric pressure. A number of capillaries were placed in a glass tube and placed on top of an oven such that the lower part of the capillaries were at ca. 28—30 °C. Crystals which grew by sublimation were examined every 4 d until a suitable crystal for X-ray diffraction studies was found. After the X-ray photographic work was complete, the Raman spectrum of the single crystal was obtained and found to be identical to that

Table 6. Vibrational s	spectra (cm ⁻¹) ^a of BiF ₅	and $SbF_{s}(BiF_{s})_{n}$ $(n \ge 1)$
------------------------	--	--

BiFs	Ь	BiF ₅ ·S	bFs	(BiF5)2SbF5	(BiF ₅)	20.6SbF5	
Raman	I.r. [»]	Raman	I.r. [»]	Raman	Raman	I.r."	Tentative assignments ^c
			710s	702vvw		721s	e_u SbF ₄ antisymmetric stretch
			686 (sh)			683s	Combination? or as above?
		667w	668 (sh)	677w 626vw	677w		a _g SbF ₄ in-phase stretch b _g SbF ₄ out-of-phase stretch
	627s	622vw	620s	617vw		623 (sh)	e, BiF, antisymmetric stretch
595s 4		598s	597 (sh)	598s	595s	598 (sh)	a_{a} BiF ₄ in-phase stretch
570w		572w		572w	570w	. ,	b_a BiF ₄ out-of-phase stretch
			500mw,br			520w,br	a, Bi-F-Sb bridging stretch
	450m		450m,br			450w,br	a _v Bi-F-Bi bridging stretch
		304vw	,	304vw	304vw	,	b_a SbF ₄ deformation
255w	220m	255w		255w	255w		b_a BiF ₄ deformation
167w,br ª		165w,br		165w,br	166w,br		e _a BiF₄ tilt

^a The Raman spectra of polycrystalline (BiF₃)_nSbF₅ (n = 2 or 3) and the i.r. spectra of (BiF₃)_nSbF₅ (n = 1 or 3) are included in SUP 56053. ^b Reported in ref. 32. ^c The assignments have been made by assuming that the symmetry of each Bi and Sb unit is C_{4n} . Description of modes follows that given in ref. 32. The presence of peaks forbidden by the mutual exclusion rule indicates that the symmetry about the heavy atoms is less than C_{4n} . ^d The weak band at 101 cm⁻¹ [$v_2(a_g)$] reported for BiF₃³² was not clearly observed in our spectra.

of an analysed sample of $BiF_5(SbF_5)_2$. Peaks were absent at 1 058 cm⁻¹, the strongest peak in the Raman spectrum of WF₄O ²³ which is isostructural with NbF₅, and could be formed by partial hydrolysis of WF₆.

(2) $BiF_5(SbF_5)_3$. A large crystal, obtained from the first sublimation product of preparation 2, Table 1, was identified as $BiF_5(SbF_5)_3$ from its Raman spectrum. A small crystal suitable for X-ray studies was then cut from the larger crystal.

Single Crystal X-Ray Analysis.—BiF₅(SbF₅)₂. Monoclinic, a = 9.69(1), b = 14.37(2), c = 5.26(1) Å, $\beta = 95.6(3)^{\circ}$, U = 728(4) Å³, M = 737.46, Z = 8/3, $D_c = 4.48$ Mg m⁻³, F(000) = 853.33, μ (Mo- K_{α}) = 21.1 mm⁻¹, space group C2/m (Cm or C2) established from precession photographs.

BiF₅(SbF₅)₃. Monoclinic, a = 9.704(3), b = 14.353(4), c = 5.266(2) Å, $\beta = 95.59(3)^{\circ}$, U = 730(1) Å³, M = 954.20, Z = 2, $D_c = 4.34$ Mg m⁻³, F(000) = 832, μ (Mo- K_{α}) = 17.7 mm⁻¹, space group C2/m (*Cm* or C2).

Cell parameters of BiF₅(SbF₅)₃ were determined by leastsquares fit to the centred co-ordinates of 12 reflections on a Picker FACS-I diffractometer using Mo- K_{α} radiation, $\lambda = 0.710$ 69 Å. In both cases, various over-exposed photographs showed no evidence for the existence of a superlattice.

Mass Spectra.—Mass spectra of $BiF_5(SbF_5)_n$ (n = 2 or 3) were obtained using a molecular-beam mass spectrometer ^{24,25} constructed to investigate reactive fluorides by Dr. M. J. Vasile of Bell Laboratories, N.J., U.S.A. The results are given in Table 3.

Physical Properties of BiF₅(SbF₅)_n and (BiF₅)_nSbF₅ Adducts. —Crystals of BiF₅(SbF₅)_n (n = 2 or 3) are well defined, clear, and colourless. The adducts showed no signs of decomposition (Raman) on heating in a sealed tube in an oven at 100 °C for 16 h. They both have relatively sharp melting points (n = 2, 42—43 °C; n = 3, 38—39 °C); BiF₅(SbF₃)_{1.5} melts over the range 47—77 °C and is partially converted to the chain adduct on heating to ca. 80 °C for 0.5 h.

Crystals of $(BiF_5)_nSbF_5$ $(n \ge 1)$ are white, cloudy, and irregular in shape. They did not have sharp melting points, but gave some liquid at 106 (n = 1), 112 (n = 1.5), 122 (n = 3), and 145 °C (n = 20.6). A complete liquid phase was not obtained even at 152 °C, the melting point of BiF₅.² The Raman

Table 7. Unit-ce	l parameters of	(BiFs)"SbFs (n	= 1, 2, 3, or 20.6)
------------------	-----------------	----------------	---------------------

Compound	a/Å	c/Å	U/ų	Ζ
BiF5·SbF5 *	6.565(1)	4.165 1(7)	179.52(6)	2 ه
(BiF ₅) ₂ SbF ₅	6.576(3)	4.167(2)	180.2(1)	2 ه
(BiF ₅) ₃ SbF ₅	6.587(2)	4.176(1)	181.2(1)	2 ه
$(BiF_{5})_{20.6}SbF_{5}$	6.573(2)	4.205(4)	181.7(2)	2 ه
BiF ₅ ^c	6.569(2)	4.219(4)	182.1(1)	2 *

^a Observed and calculated $1/d^2$ (Å⁻²) values and intensities are deposited in SUP 56053. ^b Two units of MF₅ per unit cell. ^c Consistent with previous results.

spectra of the solid after the m.p. determination showed the adducts to contain less SbF_{s} .

Results and Discussion

Preparation of BiF₅(SnF₅)_n Adducts.—A solution of SbF₅ in WF₆ reacts with BiF₅, which does not appear to be soluble in WF_6 , to give a product of average composition $BiF_5(SbF_5)_n$ (in our experiments 3.5 > n > 1.4). Various sublimation products were obtained from the mixtures (see Table 1 and Experimental section). These products were of two distinct types. A more volatile highly crystalline product of relatively low melting point gave X-ray powder diffraction photographs similar to those of Kolditz's BiF₅(SbF₅)₂.¹⁷ The vibrational spectra of these adducts were very similar and highly suggestive of a *cis*-bridged polymer (Tables 4 and 5). The less volatile, less highly crystalline product did not have a sharp melting point, had characteristic vibrational spectra (Table 6), and powder photographs that were similar to BiF₅ (see Table 7). Thus, Raman spectroscopy and X-ray powder photography allow a ready differential of the two classes of adducts.

Of the more volatile class of adduct, three different products $BiF_5(SbF_5)_n$ (n = 3, 2, or 1.5) were identified. Their vibrational spectra (Table 4 and 5) and powder photographs were all very similar. The melting points of $BiF_5(SbF_5)_3$ (38–39 °C) and $BiF_5(SbF_5)_2$ (42–43 °C) were not very different, but eight different chemical analyses from six different samples fitted well for one or the other of these formulations (Table 2). In all cases the more volatile material analysed as $BiF_5(SbF_5)_2$; we did not obtain an analysis that gave an intermediate result. The

Compound	<i>a</i> /Å	b/Å	c/Å	β/°	<i>U</i> /ų	Space group
BiF _s (SbF _s) ₃	9.704(3)	14.353(4)	5.266(2)	95.59(3)	730(1)	C2/m ª
BiF ₅ (SbF ₅) ₂	9.69(1)	14.37(2)	5.26(1)	95.6(3)	728(4)	C2/m ^b
NbF.	9.62(1)	14.43(2)	5.12(1)	96.1(3)	706	C2/m ª

Table 8. Unit-cell parameters of BiF5(SbF5)3, BiF5(SbF5)2, and NbF

behaviours of BiF₅(SbF₅)₂ and BiF₅(SbF₅)₃ in WF₆ solution were also different. Thus it is reasonably certain that the two distinct adducts $BiF_5(SbF_5)_n$ (n = 2 or 3) were prepared in our experiments. Although the difference in melting points of the two adducts is small, we judge it to be real. The related pairs of adducts NbF₅·SbF₅ (m.p. 60), NbF₅(SbF₅)₂ (45),²⁶ TaF₅· 1.13SbF₅ (50–56), and TaF₅·2.01SbF₅ (40–45 °C) 27 also have rather similar melting points. BiF₅(SbF₅)_{1.5} (Table 2, sample 9) did not have a sharp melting point (47-77 °C) and unlike the other two adducts gave some of the less volatile trans-bridged polymer on heating at 75 °C for ca. 0.5 h, and on resolidification. The formulation of BiF_{5} -(SbF₅)₂ was given by Kolditz and Rehak ¹⁷ on the basis of bismuth and antimony analyses. The melting point was reported as 50-60 °C. It is possible that this material was a mixture of BiF₅(SbF₅)₃, BiF₅(SbF₅)₂, and BiF₅(SbF₅)_{1.5}, or that it was $BiF_5(SbF_5)_2$ which underwent some decomposition (hydrolysis?) prior to, or during, the melting point determination.

The composition of five of the *trans*-fluorine bridged $(BiF_5)_nSbF_5$ adducts (n = 1, 1.5, 2, 3, or 20.6) were established from chemical analyses (Table 2). The BiF₅ richer adducts (n = 2, 3, or 20.6) were prepared by sublimation (see Table 1). The BiF₅·SbF₅ adduct was obtained by pumping a sample of average composition BiF₅(SbF₅)_{2.15}. Pumping on BiF₅(SbF₅)₂ gave *trans*-bridged BiF₅·SbF₅, possibly by loss of the more volatile BiF₅(SbF₅)₂ and rearrangement of the less volatile (BiF₅·SbF₅)₂ tetramers to the *trans*-bridged BiF₅ type structure. A *trans*-bridged adduct analysing as (BiF₅)_{1.5}SbF₅ was formed as an insoluble product from a solution of the *cis*-bridged tetramer in WF₆ solution.

X-Ray Powder Diffraction Studies and the Structures of $BiF_{5}(SbF_{5})_{n}$ (n = 1.5, 2, or 3).—The unit-cell dimensions and diffractometer intensity data indicate that $BiF_{5}(SbF_{5})_{3}$ is isomorphous with NbF₅²² (see Table 8) and that it is likely to have the space group C2/m. Of the three compounds, only the 1:3 adduct could have a structure in which the Sb and Bi atoms are ordered without involving a superlattice. This compound was therefore chosen for a more detailed investigation. NbF₅ essentially consists of tetramers with niobium atoms lying at the corners of a square and bridging fluorine atoms linking the metal atoms with an NbFNb angle of ca. 180° . In (SbF₅)₄,⁵ on the other hand, the four antimony atoms are bridged by two fluorine atoms with a SbFSb angle of 170° and two with an FSbF angle of 141°. In the space group C2/m, half the metal ions occupy the 4(g) sites ²⁸ at $\pm(0, y, 0;$ $\frac{1}{2}, \frac{1}{2} + y, 0$ and the rest occupy 4(i) at $\pm (x, 0, z; \frac{1}{2} + x, \frac{1}{2}, z)$, so that if this is the correct space group the metals are disordered or partially disordered with either of 4(g) or 4(i)occupied only by antimony. If the space groups C2 and Cm are considered either of the 4(i) of 4(g) sites can split to become two two-fold sites, thus permitting a fully ordered structure to be described. These possibilities were all explored, but no evidence of an ordered structure was found. Refinement of a disordered model using the NbF5 structure as a starting point gave a final residual of 0.14. The fluorine positions were not well defined and a difference synthesis showed a number of peaks close to atomic positions presumably due to the inaccuracy of an averaged model. The structure of $BiF_{5}(SbF_{5})_{3}$ therefore almost certainly consists of disordered $BiF_{5}(SbF_{5})_{3}$ tetramers.

Unit-cell dimensions and precession photographic intensity data showed that $BiF_5(SbF_5)_2$ was also isomorphous with tetrameric NbF₅. The average stoicheiometry $BiF_5(SbF_5)_2$ may be achieved by a random disordered 1 : 1 mixture of BiF_5 - $(SbF_5)_3$ and $(BiF_5 \cdot SbF_5)_2$ tetramers. The $(BiF_5 \cdot SbF_5)_2$ tetramers themselves reasonably consist of alternating BiF_5 and SbF_5 groups. It is possible that the $(BiF_5 \cdot SbF_5)_2$ tetramers are stabilised by the presence of $BiF_5(SbF_5)_3$ without which they rearrange. The adduct $BiF_5(SbF_5)_{1.5}$ also likely consists of an appropriate number of $BiF_5(SbF_5)_3$ and $(BiF_5 \cdot SbF_5)_2$ tetramers as its X-ray powder diffraction photograph is essentially identical to those of $BiF_5(SbF_5)_n$ ($n = 2^{17}$ or 3).

Mass Spectra of $BiF_5(SbF_5)_n$ (n = 2 or 3).—The mass spectrum of $BiF_5(SbF_5)_3$ (Table 3) implies that the neutral species BiF_5 :SbF₅, Bi_2F_{10} , Sb₂F₁₀, Sb₃F₁₅, BiF_5 :Sb₂F₁₀, and BiF₅·Sb₃F₁₅ exist in the vapour over solid BiF₅(SbF₅)₃. Presumably BiF₅(SbF₅)₃ dissociates in the gas phase at low pressure to Sb_2F_{10} , BiF_5 :SbF₅, and BiF_5 :Sb₂F₁₀, which may themselves dissociate (e.g. into SbF_5 and BiF_5) or rearrange (thus accounting for Bi_2F_{10}). Trimers and dimers have been observed by mass spectroscopy in gaseous antimony and bismuth pentafluoride, as have tetramers and pentamers of antimony pentafluoride.9.10 Not surprisingly, the mass spectrum of BiF₅(SbF₅)₂ is similar to that of BiF₅(SbF₅)₃ except that bismuth-containing ions are more abundant and ions derived from the neutral BiF₅(SbF₅)₃ were not detected. It is noted that the relative intensities of the various species do not necessarily reflect the abundance of associated ions. The lower molecular weight ions can be produced on electron impact of the more highly associated clusters.¹⁰ That this was the case was shown from phase relationships using a molecular-beam mass spectrometer.²⁹ It was also shown ²⁹ that none of the ionic species is polar.

Vibrational Spectra of BiF₅(SbF₅)_n (n = 3, 2, or 1.5).— Raman spectra of BiF₅(SbF₅)_n (n = 3, 2, or 1.5) (see Tables 4 and 5) are similar except that, with increasing *n*, peaks in the 660—750 cm⁻¹ region increase in intensity relative to the peaks in the 600—660 cm⁻¹ region. However, a shoulder at *ca*. 698 cm⁻¹ increases in intensity with decreasing *n*. Corresponding i.r. spectra are also similar, although peaks are broad and less well defined for BiF₅(SbF₅)_{1.5}.

The i.r. and Raman spectra in the $660-750 \text{ cm}^{-1}$ region are similar to that of SbF₅ (liquid), it is therefore reasonable to assign peaks in this region to SbF₄ terminal units (of $C_{2\nu}$ symmetry), and the polarised peaks at 712 and 668 cm⁻¹ probably correspond to the symmetrical equatorial and axial stretch. Peaks in the 600-670 cm⁻¹ region are probably attributable to BiF₄ terminal groups (of $C_{2\nu}$ symmetry) and the polarised peaks at 620 and 602 cm⁻¹ may therefore be reasonably assigned to the equatorial and axial symmetric stretches respectively. The strong broad band in the i.r. at 470-515 cm⁻¹ is reasonably assigned to bridging Bi-F-Sb and/or Sb-F-Sb stretches. The vibrational spectra are therefore consistent with a *cis*-bridged structure, with BiF₄ and SbF₄ terminal units linked by bridging fluorines for all three adducts. Similar arguments have been used to support *cis*bridged structures for VF₅·SbF₅,³⁰ TaF₅·1.13SbF₅, NbF₅· 2.13SbF₅,²⁷ NbF₅,²⁷ and SbF₅.^{6,31}

The Raman spectra of $BiF_5(SbF_5)_n$ (n = 3, 2, or 1.5) are very similar in the solid and liquid states and for n = 3, in WF₆ solution, implying that the *cis*-bridged tetrameric structure persists both in the solution and the liquid state. However, the vibrational spectra of $BiF_5(SbF_5)_3$ are similar to those of $BiF_5(SbF_5)_2$ and $BiF_5(SbF_5)_{1.5}$, which are very likely made up of $BiF_5(SbF_5)_3$ and $(BiF_5 \cdot SbF_5)_2$ units in appropriate ratios, thus indicating that the vibrational spectrum of $BiF_5(SbF_5)_3$ is not very different from that of $(BiF_5 \cdot SbF_5)_2$.

The symmetric antimony-fluorine stretches in $BiF_5(SbF_5)_n$ (n = 3, 2, or 1.5) at 712 and 668 cm⁻¹ are, on average, only very slightly lower in frequency than the corresponding stretches in liquid SbF₅, suggesting that these adducts are largely covalent with a small ionic contribution to the overall structure, *e.g.* [BiF₄]⁺[Sb₃F₁₆]⁻ in BiF₅(SbF₅)₃, consistent with the greater Lewis acidity of SbF₅.^{14,15}

Behaviour of $BiF_5(SbF_5)_n$ (n = 2 or 3) in WF₆ Solution. $BiF_5(SbF_5)_n$ (n = 2 or 3) (0.3 and 0.49 g respectively) both dissolve in WF₆ (0.66 and 1.32 g respectively) to give clear solutions. However, a precipitate quickly forms after dissolution of BiF₅(SbF₅)₂, whereas precipitation occurs after 20 min for BiF₅(SbF₅)₃. It is possible that BiF₅(SbF₅)₂ dissolves to give $BiF_5(SbF_5)_3$ and $(BiF_5 \cdot SbF_5)_2$ tetramers in solution. The (BiF₅·SbF₅)₂ tetramers may polymerise leading to the observed precipitate of trans-bridged (BiFs)1.5SbFs. The enrichment of bismuth pentafluoride in the precipitate, relative to a SbF_5 ·BiF₅ composition, may be accounted for by redistribution reactions during the polymerisation of (BiFs. SbF_{s}_{2} and/or by the loss of antimony pentafluoride, as $BiF_5(SbF_5)_3$, from the precipitate into solution. A separate experiment confirmed that an insoluble chain adduct, on washing with WF₆, becomes enriched with bismuth pentafluoride, at the same time giving the tetrameric adduct in solution

 $BiF_5(SbF_5)_3$ probably exists as such in WF_6 solution but undergoes a slow redistribution reaction leading to $(SbF_5)_4$ and $(SbF_5 \cdot BiF_5)_2$. The latter may then polymerise leading to the observed precipitate.

X-Ray Powder Diffraction Studies and Structures of $(BiF_5)_nSbF_5$ (n = 1, 2, 3 or 20.6).—X-Ray powder diffraction photographs of $(BiF_5)_nSbF_5$ (n = 1, 2, 3, or 20.6) were all similar, both in the position and intensity distribution of the lines, to that of bismuth pentafluoride and were indexed on the basis of tetragonal unit cells of similar dimensions (Table 7). The adducts $(BiF_5)_n SbF_5$ (n = 1.5 or >21) also had similar powder photographs. It is therefore reasonable to conclude that they are all isomorphous and isostructural. All the adducts therefore have trans-bridged linear structures similar to that of bismuth pentafluoride, for which the structure had been determined from single-crystal work.⁸ The structure of bismuth pentafluoride contains one asymmetric unit of BiF₅ per unit cell. The (BiF₅)_nSbF₅ adducts must therefore comprise disordered SbF5 and BiF5 units in appropriate ratios. A plot of the unit-cell volumes of BiF₅ and the various (BiF₅), SnF₅ adducts versus mol% SbF₅ gives a fairly good straight line.

The major changes in the cell parameters occur in the c axis (parallel to the chain axis), which shortens with increasing SbF₅ content. The value of c (Table 7) is the distance between

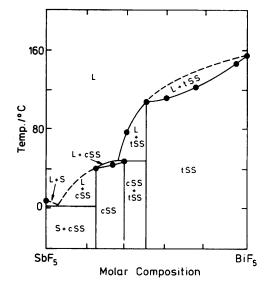


Figure. Estimated phase diagram for the system BiF_{s} -SbF_s. All melting-point data are included: cSS = *cis*-bridged solid solution; tSS = *trans*-bridged solid solution; L = liquid; and S = crystal-line SbF_s

two adjacent heavy atoms and twice the average heavy atombridging fluorine bond distance. The values of c in the *trans*bridged (BiF₃)_nSbF₅, and the distance between two heavy atoms in the cis-bridged tetramer (SbF₅)₃BiF₅ [4.147(6) Å], are fitted by the equation $d_{calc.} = 0.0904x + 4.118$ for $x(BiF_5)$ - $(1 - x)SbF_5$. This suggests that cis- and *trans*-bridging fluorine bond distances are essentially equal for a given composition. The *a* axis remains essentially constant in all the adducts (see Table 7).

Vibrational Spectra of (BiF₅)_nSbF₅ Adducts.—The vibrational data for these and other related adducts are presented in Table 6, or in the preliminary communication.¹⁸ The Raman peaks in all the adducts occur at ca. 677, 625, 618, 595, 570, 304, 255, and 167 cm⁻¹. The relative intensities of the set at ca. 595, 570, 255, and 167 cm⁻¹ are approximately identical to those of $(BiF_5)_{\infty}$ itself;^{31,32} this set is attributed to a 'BiF₆' unit consisting of a planar BiF₄ linked to neighbouring BiF₄ or SbF₄ units via two trans-bridging fluorine atoms. Consistently, the peaks increase in relative intensity as the BiFs content in the adduct increases. The relative intensities of a weaker set occur at ca. 677, 625, and 304 cm⁻¹, and are therefore attributed to 'SbF₆' units. The i.r. spectra of the $(BiF_5)_nSbF_5$ adducts are also similar, except that the peak at 720 cm⁻¹ increases in intensity with increasing SbF₅ content, and that at 620 cm⁻¹ increases with BiF₅ content. Therefore, by comparison with the i.r. spectrum of BiF₅, the peaks at 620 and 720 cm⁻¹ are readily assigned to the e_{μ} antisymmetric BiF₄ and SbF₄ stretching vibrations. The broad weak peak at ca. 450-500 cm⁻¹ is assigned to Bi-F-Bi and Bi-F-Sb stretching vibrations. Thus, the vibrational spectra of these $(BiF_5)_nSbF_5$ adducts strongly support a trans-bridged $(BiF_5)_{\infty}$ structure, similar to that of BiF, itself.

A comparison of the stretching frequencies of the planar BiF₄ units in BiF₅ and the (BiF₅)_nSbF₅ adducts (Table 6) shows that they are not very different, thus suggesting the adducts have substantial covalent character. A more sensitive indication of the ionicity of the adduct could be deduced from the frequencies of the bridging Bi-F and Sb-F vibrations. Unfortunately, these vibrations appear as broad peaks and separate Bi-F and Sb-F assignments were not possible. The melting point of BiF_5 itself,¹ and the incongruent melting points of the *trans*-bridged adducts, lie on a smooth curve whose form is typical of the solidus curve for a solid solution. The reactivity of the melts prevented determination of the corresponding liquidus curve, shown as a dashed line in the Figure. Although there thus appears to be a continuum of solid solutions between BiF_5 :SbF₅ and BiF_5 at the solidus line, compounds with ordered structures and definite stoicheiometries may well occur at lower temperatures.

Of the three *cis*-bridged tetrameric adducts that were isolated, $BiF_5(SbF_5)_3$ and $BiF_5(SbF_5)_2$ melted congruently, or nearly so, whereas $BiF_5(SbF_5)_{1.5}$ melted incongruently. From these observations, we deduce the presence of a peritectic point near 47 °C and 35 mol% BiF₅. Since the tetrameric adducts are isostructural, we assume that solid solutions exist between them. Our observations of only certain stoicheiometric compositions can be explained in terms of fractional sublimation. We show $BiF_5(SbF_5)_{1.5}$ as the BiF_5 -rich limit of the *cis*-bridged solid solution series. However, it is possible that this compound is metastable, and that the equilibrium limit is at lower BiF_5 content.

The region of the phase diagram below 25 mol% BiF₅ could not be examined in detail because of supercooling of the SbF₅-rich liquids. However, the observation of pasty products at SbF₅ : BiF₅ ratios ≥ 3.0 is consistent with the eutectic behaviour that we indicate for this region (Figure). Also, although SbF₅ is a *cis*-bridged tetramer in the solid state,⁵ the conformation of this tetramer differs from that of the NbF₅type structure adopted by the *cis*-bridged BiF₅-SbF₅ adducts, so solid solution formation is not anticipated to any degree between (SbF₅)₄ and BiF₅(SbF₅)₃.

Conclusions

The SbF₅-rich BiF₅(SbF₅)_n (n = 1.5, 2, or 3) adducts consist of cis-bridged tetramers like ⁵ solid (SbF₅)₄. The BiF₅-rich (BiF₅)_nSbF₅ ($n \ge 1$) adducts adopt trans-bridged polymeric BiF₅ structures.⁸ Presumably the energy difference between a trans-bridged and a cis-bridged arrangement is not very great, given the right environment either arrangement can be adopted. That the BiF₅·SbF₅ adduct has a trans-bridged structure suggests that the energy difference between a bismuth trans- and cis-bridged arrangement is greater than that between an antimony trans- and cis-bridged arrangement. Why (BiF₅)_∞ and (SbF₅)₄ have trans- and cis-fluorine bridged structures respectively remains an open question.

Acknowledgements

We wish to thank the N.S.E.R.C. (Canada) for financial support and Drs. W. E. Falconer and M. J. Vasile of Bell Laboratories, Murray Hill, N.J., U.S.A. for the mass spectra and for helpful discussions.

References

- R. D. W. Kemmitt and D. W. A. Sharp, in 'Advances in Fluorine Chemistry,' eds. M. Stacey, J. C. Tatlow, and A. G. Sharpe, Butterworths, London, 1965, vol. 4, p. 142 and refs. therein.
- 2 J. Fawcett, A. J. Hewitt, J. H. Holloway, and M. A. Stephen, J. Chem. Soc., Dalton Trans., 1976, 2422 and refs. therein.
- 3 D. J. Reynolds, in 'Advances in Fluorine Chemistry,' eds. J. C. Tatlow, R. D. Peacock, H. H. Hyman, and M. Stacey, Butterworths, London, 1973, vol. 7, p. 1 and refs. therein.
- 4 G. S. H. Chen and J. Passmore, J. Chem. Soc., Dalton Trans., 1979, 1257 and refs. therein.
- 5 A. J. Edwards and P. Taylor, Chem. Commun., 1971, 1376.
- 6 I. Beattie, R. Crocombe, A. German, P. Jones, C. Marsden, G. Van Schalkwyk, and A. Bukovszky, J. Chem. Soc., Dalton Trans., 1976, 1380 and refs. therein.
- 7 J. Brunvoll, A. A. Ischenko, I. N. Miakshin, G. V. Romanov, V. P. Spiridonov, T. C. Strand, and V. F. Sukhoverkhov, Acta Chem. Scand., Ser. A, 1980, 34, 733.
- 8 C. Hebecker, Z. Anorg. Allg. Chem., 1971, 384, 111.
- 9 M. J. Vasile, G. R. Jones, and W. E. Falconer, *Adv. Mass Spectrom.*, 1974, 6, 557.
- 10 W. E. Falconer, G. R. Jones, W. A. Sander, M. J. Vasile, A. A. Muenter, T. R. Dyke, and K. Klemperer, J. Fluorine Chem., 1974, 4, 213 and refs. therein.
- 11 J. Fawcett, J. H. Holloway, R. D. Peacock, and D. K. Russell, J. Fluorine Chem., 1982, 20, 9.
- 12 R. J. Gillespie, K. Ouchi, and G. P. Pez, Inorg. Chem., 1969, 8, 63.
- 13 J. C. Haartz and D. H. McDaniel, J. Am. Chem. Soc., 1973, 95, 8562.
- 14 R. J. Gillespie, D. Martin, G. J. Schrobilgen, and D. R. Slim, J. Chem. Soc., Dalton Trans., 1977, 2234.
- 15 R. J. Gillespie, D. Martin, and G. J. Schrobilgen, J. Chem. Soc., Dalton Trans., 1980, 1898.
- 16 G. S. H. Chen and J. Passmore, J. Chem. Soc., Dalton Trans., 1979, 1251.
- 17 L. Kolditz and W. Rehak, Z. Anorg. Allg. Chem., 1966, 342, 32.
- 18 G. S. H. Chen, J. Passmore, P. Taylor, and T. K. Whidden, *Inorg. Nucl. Chem. Lett.*, 1976, 12, 943.
- 19 J. Passmore and P. Taylor, J. Chem. Soc., Dalton Trans., 1976, 804.
- 20 C. Lau and J. Passmore, J. Chem. Soc., Dalton Trans., 1973, 2528.
- 21 C. D. Desjardins and J. Passmore, J. Fluorine Chem., 1975, 6, 379.
- 22 A. J. Edwards, J. Chem. Soc., 1964, 3714.
- 23 I. R. Beattie, K. M. S. Livingston, D. J. Reynolds, and G. A. Ozin, J. Chem. Soc. A, 1970, 1210.
- 24 M. J. Vasile, F. A. Stevie, and W. E. Falconer, Int. J. Mass Spectrom. Ion Phys., 1975, 17, 195.
- 25 M. J. Vasile, G. R. Jones, and W. E. Falconer, Int. J. Mass Spectrom. Ion Phys., 1973, 10, 457.
- 26 A. J. Edwards, J. Chem. Soc., Dalton Trans., 1972, 2325.
- 27 P. A. W. Dean and R. J. Gillespie, Can. J. Chem., 1970, 49, 1736.
- 28 'International Tables for X-Ray Crystallography,' Kynoch
- Press, Birmingham, 1965, vol. 1. 29 M. J. Vasile, Bell Laboratories, Murray Hill, N.J., U.S.A.,
- unpublished work.
- 30 W. Sawodny, R. Opferkuch, and W. Röhlke, J. Fluorine Chem., 1978, 12, 253.
- 31 I. R. Beattie, K. M. S. Livingston, G. A. Ozin, and D. J. Reynolds, J. Chem. Soc. A, 1969, 958.
- 32 I. R. Beattie, N. Cheethan, T. R. Gibson, K. M. S. Livingston, and D. J. Reynolds, J. Chem. Soc. A, 1971, 1910.

Received 13th June 1983; Paper 3/997